
A motorised fluorescence cube linear positioner.doc 1

A motorised fluorescence cube linear positioner

1. Introduction

Fluorescence microscopes require fluorescence ‘cubes’, i.e. assemblies of excitation, dichromatic

and emission filters and automated microscopes require a system to move one of a selection of such

cubes into the optical path. Commercial microscopes often employ a rotating, motorised turret

mechanism holding six or more cubes. However, very often only a few of thee are actually used. A

circular geometry has the advantage of compactness, utilising available space rather efficiently. On

the other hand, a linear geometry is more suitable when dealing with a restricted number of cubes.

Such a linear geometry is much simpler to design and we present here such an arrangement. In

common with most of our optical mechanics, we make our design compatible with the Thorlabs

(http://www.thorlabs.de) range of optomechanical components, i.e. we make use of their 6 mm

diameter ‘cage’ rod system and SM1 lens tube fittings.

Our laboratory uses several Nikon microscopes and we have

thus made this system compatible with their current (!) range of

cubes (http://www.nikoninstruments.eu/Products/Microscope-

Systems) which have 96xxx part numbers and use 25 mm

diameter filters. The filters are held in a plastic housing, as

shown in Figure 1, and are used in the TE2000 and 90i series of

microscopes.

2. Servo electronics

We use a very simple position servo system, using a geared DC

motor coupled to a rack and pinion system which converts

circular motion into linear motion to drive the ‘cubes’ to their

required position. Feedback is provided by Hall effect digital magnetic sensors which ‘read’ the cube

slider position using encoded position, defined by a 2 bit code. The code is determined by small

permanent magnets inserted in the cube slider. A Microchip PIC microprocessor reads the magnet

code and drives the motor in the appropriate direction until the desired position is reached. In

addition, we provide two microswitches to sense an open side lid on the assemblies and drive the

slider to the appropriate extreme so as to facilitate cube interchange.

The full circuit of this servo is shown in Figure 2. The set-point is determined either through an

external I
2
C interface or a local three-position toggle switch. The PIC (a Microchip 16F876, 28 pin)

I

Figure 1. The Nikon fluorescence

cube suitable for the design

presented in this note.

Figure 2. The complete

circuit diagram of the

servo controller. Please

see text for explanation.

A motorised fluorescence cube linear positioner.doc 2

is able to read up to three Hall effect switches (though only two are used here), making the same

basic design suitable for setting up to 7 positions and drives the DC motor through a bipolar H-

bridge driver, made form two paralleled halves of a L293E 20 pin chip (ST Microlectronics, Farnell

146-7711). A device for converting USB data to I2C data is described in one of our other

application notes: “USB1 communications interface for controlling instruments”.

The position sensors used are Honeywell S&C type SS443A (Farnell 3111507) and they are

employed in conjunction with small neodymium permanent magnets, obtained from Rapid

Electronics (http://www.rapidonline.com), type M1219-2, order code 78-1066. These sensors are

mounted on a small, fixed printed circuit board, while pairs of magnet locations are allocated on the

slide mechanism. The position codes are defined by whether or not the magnets are inserted in them,

along the lines indicted in Figure 3.

Figure 3: Arrangement of magnets (their presence indicated by the blue dots) placed in holes along

the moving part of the assembly, and the sensors (green) on the printed circuit board.

The microcontroller continuously reads the outputs from the two sensors: code 00 indicates that the

stage is travelling and when the required code is reached the motor either stops or travels past the

required position for a short time, reverses and approaches the target position from the same

direction. This ensures not only a high degree of positional accuracy but also removes any potential

issues with hysteresis in the gearbox or coupling. With hindsight, we should have used a Gray code

(which only allows a single bit change at adjacent positions (i.e. codes 01, 11, 10, rather than 01, 10,

11) but nevertheless the firmware code in the PIC copes well with finding the required position.

There is always some potential for misreading the code, so any change in either of the bits is sensed

and a timer activated for a few milliseconds. After this time (adjusted for the travel speed required),

the stage is stopped. More details can be found in the section dealing with software and firmware.

We used a Microchip 16F876 controller; this requires a crystal in order to operate at the appropriate

clock frequency (20 MHz in our case). More recently PICs with an internal clock oscillator have

become available and these could equally well be used in this application. The PIC provides three

signals to the motor driver: an enable signal, a signal to determine motor direction and a pulse

width modulated output to determine motor speed. Using these three signals allows all motor

conditions to be taken care of.

3. Servo printed circuit boards

The servo system is constructed on two double-sided

boards: one contains the sensors and the other the rest of

the circuit. All interconnections are made with 0.1” pitch

board-to-wire Molex connectors. The main circuit board

is itself housed in a small (73 x 51 x 25 mm) plastic case

(Multicomp HBT3, Farnell part# 645680) which also

contains the set-point 3-way toggle switch. The sensor

board layout is shown in Figure 4, while that of the main

board is shown in Figure 5.

Position 1,
code 01

Position 2,
code10

Position 3,
code 11

00 in transit
10 position 1
01 position 2
11 position 3

etc. when # of
positions is increased

magnets
sensors

40 mm

 3
0
 m

m

Figure 4. Printed circuit board

layout of the sensor board. Not

much to be described here!

A motorised fluorescence cube linear positioner.doc 3

We use PCB pool for board manufacture

(http://www.pcb-pool.com/ppuk/info.html)

and board assembly is very quick as there are

so few components! The assembled printed

circuit board, mounted in the box and the rest

of the assembly is shown in Figure 6.

Figure 6. Assembled electronics in plastic

case on the side of the cube drive unit. The

motor, sensor and microswitch connections

are at the bottom of the board, having been

routed through apertures in the assembly.

The i/o connections are made through a

multi-way cable exiting the side of the box

and terminating in a 6 way mini-DIN

connector, as seen in the lower image.

4. Mechanical system

Since mechanical loads on the motor are fairly low and stage travel speeds are similarly low, a low

cost geared motor has been used to provide mechanical drive. With this combination of gearing,

cubes can be changed in ~2 seconds going from one end to the other, i.e. in just over 1 second when

travelling between adjacent positions. The motor is a MFA/Como 941D series, coupled to a 62:1

ratio epicyclic gearbox (http://mfacomodrills.com/). It can be obtained from Rapid Electronics

(http://www.rapidonline.com/) as part number 37-1198. The gearbox is coupled to a small 9 mm

diameter 0.5 module plastic pinion, also available form Rapid Electronics as part number 37-0200,

68.5 mm

4
5
.5

 m
m

Figure 5. Printed circuit board layout

of the servo system electronics.

A motorised fluorescence cube linear positioner.doc 4

which in turn drives linear 0.5 module Delrin rack. The rack can be obtained from Davall Stock

Gears / Stock drive Products (www.sdp-si.com) as part number A1M12MYZ0525A. An alternative

supplier for the rack is Huco (http://www.huco.com), part# 104291601.

The construction of the unit can be seen in Figure 7. A long baseplate holds a pair of 100 mm travel,

8 mm tall linear ballslides (Deltron DA-5, http://www.deltron.com/) Similar ballslides are also

available from Automotion (http://www.automotioncomponents.co.uk/), part # L1029.014-100 and

doubtless from other suppliers. This plate is made wide enough so as to be compatible with the

Thorlabs (http://www.thorlabs.de) 60 mm cage system (e.g. LC6W) and allows mounting rods from

this system to pass trough the assembly without interference form any other components. A small

plate is attached to the front of this baseplate, and arranged to be compatible with the 30 mm cage

system (e.g. C4W). An SM! Hole is tapped into this plate to allow a lens to be mounted ahead of the

fluorescence cubes which are dovetail-mounted on a plate attached to the moving parts of the

ballslides. The front plate width is restricted to allow cubes to be removed or interchanged. In

contrast, a full length rear plate is attached to the baseplate and the drive motor is mounted on it. A

top plate attached to the rear and front plates is attached, completing the assembly. Finally two

folded aluminium sheets are fitted around the sides to complete the assembly. Small microswitches

are used to sense when the cover plates are removed, driving the ballslide so as to expose the cubes.

The feedback system described earlier is constructed by fitting a thin plate to the back of the

dovetailed cube plate and mounting the magnets within this. The sensor printed circuit board is

fitted to the bottom plate with a ‘U’ shaped block (shown in blue on the SolidWorks model.

Figure 7. Details of the construction of

the fluorescence positioner in the form

of a SolidWorks model and the finalised

assembly.

A motorised fluorescence cube linear positioner.doc 5

5. PIC firmware

The firmware was written using a CCS C-code compiler (http://www.ccsinfo.com/) which makes

generating the code considerably easier than using an assembler code language such as Microchip

MPLAB. The sample code below may be found useful should future modifications be required.

There are probably neater or more succinct ways of writing code, but nevertheless, the sample code

below satisfies our needs.

//Compiler used CCS PCWH 4.101

//Program to control cube slider with 3 cubes using 2 Hall effect sensors

//Inputs are:

//A1,A2 hall effect position inputs

//B4,B5 set position controls

//C5,C6 cover micro-switches

//Modified 8 Jan 08 - changed write listing in the I2C read interrupt so I2C clock is released later (2us) after data than in the

original CCS compiler

//25 May 10 added longer delay on overcurrent stop

#include "C:\Program Files\PICC\Programs\Cube position\cube_position.h"

#define RX_BUF_LEN 10 //This must be 10 or less or it takes to long to clear

#define NODE_ADDR 0x64 // Primary I2C address of the slave node

#define currentLimit 240 //Motor current limit across 10R when moving to end positions

#define intergratedCurrentLimit 750 //Three readings added over 60 ms from start of movement during

any movement(was 650)

#use i2c(Slave,Slow,sda=PIN_C4,scl=PIN_C3,address=NODE_ADDR)

BYTE slave_buffer[RX_BUF_LEN];

void ReadInput(void);

void i2c_interrupt_handler(void);

void MoveCtrl(void);

void PositionCTRL(void);

void ExtSetCtrl(void);

void InitPosition(void);

void ExtSetCtrlfg(void);

int1 ReadPosition_fg=0,stop_fg=0,end_fg=0,move_fg=0,readinputs_fg=0; //Initalise flags

int1 RHlimit_fg,LHlimit_fg,ExtSetCtrl_fg=0,FirstRead_fg=0;

int1 direction,duty_cycle_fg=0;

int buffer_index,mode,SetPosition=1,position=2,read_position;

int16 OverCurrentDelay=10000; //1000 equals 40ms/read (ie if set to 10,000, 5 reads in 2

seconds)

BYTE state;

unsigned int16 motorCurrent;

signed int Cn;

#int_RB

void RB_isr() //Read external switch position to set slider

{

 ExtSetCtrl();

 ExtSetCtrl_fg=1; //Set flag

 FirstRead_fg=1; //Delays the first position read to move off sensors

}

#INT_SSP

void ssp_interupt ()

{

int16 OverCurrentDelay_lsb;

i2c_interrupt_handler();

 if(state==5){ //Six bytes received address discarded

 mode=slave_buffer[0];

 switch(mode){

 case 0: //Set position

 SetPosition = (slave_buffer[1]);

 ReadPosition_fg=1; //Set flags

 FirstRead_fg=1;

 stop_fg=0;

 break;

 case 1:

 OverCurrentDelay = (slave_buffer[1]);

 OverCurrentDelay_lsb = (slave_buffer[2]);

 OverCurrentDelay = (OverCurrentDelay<<8 | OverCurrentDelay_lsb);

 break;

 }

 }

}

//--

void ReadInput()

{

 switch(mode)

 {

 case 255:

 slave_buffer[buffer_index] = read_position;

 buffer_index++;

 break;

 }

}

//---

void i2c_interrupt_handler(void)

{

BYTE incoming;

unsigned char tx_byte;

 state = i2c_isr_state();

 if(state < 0x80) //Master is sending data

 {

 incoming = i2c_read(); //State 0 is address

A motorised fluorescence cube linear positioner.doc 6

 switch(state)

 case 1: //First data byte

 slave_buffer[(state-1)] = incoming;

 break;

 case 2: //Second data

 slave_buffer[(state-1)] = incoming;

 break;

 case 3: //Third data

 slave_buffer[(state-1)] = incoming;

 break;

 case 4: //Fourth data

 slave_buffer[(state-1)] = incoming;

 break;

 case 5: //Fifth data

 slave_buffer[(state-1)] = incoming;

 break;

 case 6: //Sixth data

 slave_buffer[(state-1)] = incoming;

 break;

 }

 }

 if(state == 0x80) //Master is requesting data

 {

 buffer_index = 0; //Reset the buffer index

 ReadInput(); //Read bytes into buffer

 buffer_index = 0; //Reset the buffer index

 tx_byte = slave_buffer[buffer_index]; //Get byte from the buffer

 //i2c_write(tx_byte);

#asm //Assembler for write command

 MOVF tx_byte,W

 MOVWF 0x66

 MOVF 0x13, W

 MOVF 0x66, W

 MOVWF 0x13 //Set data into buffer

 nop //Delay before releasing clock

 nop //10 nop i.e. 2 us

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 BSF 0x14.4 //Release clock

 BCF 0x0C.3 //Clear SSP interrupt flag

TEST_BF:

 BSF 0x03.5 //Change to bank 1

 BTFSS 0x14.0 //Test BF bit

 GOTO BF_OK

 BCF 0x03.5 //Change to bank 0

 GOTO TEST_BF

BF_OK:

 CLRF 0x78

 BCF 0x03.5 //Change to bank 0

#endasm

 buffer_index++; // increment the buffer index

 break;

 }

 if(state > 0x80){

 tx_byte = slave_buffer[buffer_index]; // Get byte from the buffer

 // i2c_write(tx_byte); //Write next byte

#asm //Assembler for write command

 MOVF tx_byte,W

 MOVWF 0x66

 MOVF 0x13,W

 MOVF 0x66,W

 MOVWF 0x13 //Set data into buffer

 nop //Delay before releasing clock

 nop //10 nop i.e. 2us

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 BSF 0x14.4 //Release clock

 BCF 0x0C.3 //Clear SSP interrupt flag

TEST_BF_1:

 BSF 0x03.5 //Change to bank 1

 BTFSS 0x14.0 //Test BF bit

 GOTO BF_OK_1

 BCF 0x03.5 //Change to bank 0

 GOTO TEST_BF_1

BF_OK_1:

 CLRF 0x78

 BCF 0x03.5 //Change to bank 0

 #endasm

 buffer_index++; //increment the buffer index

 break;

 }

}

//**

void ExtSetCtrl() //Set position to external switch setting

{

int B4,B5,tempSetPosition;

tempSetPosition=SetPosition; //Save copy of previous value

 B4 = input (pin_B4);

 B5 = input (pin_B5)<<1;

 SetPosition = (B4 | B5) ; //Inputs have internal pull-ups

A motorised fluorescence cube linear positioner.doc 7

 switch(SetPosition){

 case 3:

 SetPosition=2;

 break;

 case 2:

 SetPosition=3;

 break;

 }

 if(SetPosition >3 || SetPosition <1){ //if outside permitted values

 SetPosition = tempSetPosition; //Reset to previous value

 }

 else{

 ReadPosition_fg=1; //Set flag to read

 stop_fg=0;

 }

}

//**

 void MoveCtrl() // Move control

{

int16 x;

int duty_cycle;

 Cn=SetPosition - position ; //Wanted position - actual position

if(Cn==0 && stop_fg==1){

 output_bit(PIN_C1 ,0); //Pin C1 low direction pin

 set_pwm1_duty (0); //Brake motor

 x=64000; //Delay to allow to stop

 while(x>0){

 x--;

 }

 output_bit (PIN_C0 , 0); //Disable motors

 ReadPosition_fg=0; //Clear flags

 end_fg=0;

 duty_cycle_fg=0;

 }

if((Cn==0) && (stop_fg==0) && (direction==1)){ //Position reached so do reposition

 //Drive further in -ve direction for short distance

 position=0; //To make slider overshoot position

 duty_cycle_fg=1;

 x=50000; //Drive a bit further in same direction

 while(x>0){

 x--;

 }

 stop_fg=1; //Set stop flag so will only do this once

 /////////////////////////////////// added code

 set_pwm1_duty (200); //Brake motor

 x=32000;

 while(x>0){ //Stop delay

 x--;

 }

 }

if((Cn==0) && (stop_fg==0) && (direction==0)){ //Position reached

 stop_fg=1; //Set stop flag

 }

if(Cn >0){

 direction=0;

 output_bit(PIN_C1 ,0); //Pin C1 low direction pin

 duty_cycle=200;

 set_pwm1_duty (duty_cycle);

 output_bit (PIN_C0 , 1); //Enable motors

 }

if(Cn <0){

 direction=1;

 output_bit(PIN_C1 ,1); //Pin C1 high direction pin

 set_pwm1_duty (0);

 output_bit (PIN_C0 , 1); //Enable motors

 }

}

//***

void checkuSwitch()

{

int16 x;

int C5,C6;

motorCurrent=0;

C5 = input (pin_C5);

C6 = input (pin_C6);

 if(end_fg==0){ //Check so only do once

 if(C5==0 && C6 ==1){

 while(motorCurrent<currentLimit){

 direction=0;

 output_bit(PIN_C1 ,direction); //Pin C1 low direction pin

 set_pwm1_duty (200);

 output_bit (PIN_C0 , 1); //Enable motors

 motorCurrent=read_adc(); //Read current on motor

 end_fg=1;

 }

 output_bit (PIN_C0 , 0); //Disable motors

 position=3;

 LHlimit_fg=1;

 }

 if (C6 ==0 && C5==1){

 while(motorCurrent<currentLimit){

 direction=1;

 output_bit(PIN_C1 ,direction); //Pin C1 high direction pin

 set_pwm1_duty (0);

 output_bit (PIN_C0 , 1); //Enable motors

 motorCurrent=read_adc(); //Read current on motor

 end_fg=1;

A motorised fluorescence cube linear positioner.doc 8

 }

 output_bit (PIN_C0 , 0); //Disable motors

 position=1;

 RHlimit_fg=1;

 }

 }

 if(C6 ==1 && C5==1 && (RHlimit_fg==1 || LHlimit_fg==1)){

 if(LHlimit_fg==1){

 while(motorCurrent<currentLimit){

 direction=1;

 output_bit(PIN_C1 ,direction); //Pin C1 high direction pin

 set_pwm1_duty (0);

 output_bit (PIN_C0 , 1); //Enable motors

 motorCurrent=read_adc(); //Read current on motor

 RHlimit_fg=1; //Now at RH limit

 }

 output_bit (PIN_C0 , 0); //Disable motors

 }

 if(RHlimit_fg==1){

 position=0;

 }

 x=64000;

 while(x>0){

 x--;

 }

 output_bit (PIN_C0 , 1); //Enable motors

 ReadPosition_fg=1; //Set flags to reposition

 stop_fg=0;

 RHlimit_fg=0; //Clear flags

 LHlimit_fg=0;

 }

}

//***

 void PositionCtrl() //Read 2 (3)bits to determine position RA1, RA2(and RA3)

 {

 int16 x;

 int A1,A2,temp_position;

 temp_position=position; //Save previous value

if(FirstRead_fg==1){ //Delay first read

 x=64000;

 while(x>0){

 x--;

 }

 FirstRead_fg=0; //Clear flag

}

 A2 = input (pin_A2)<<1;

 A1 = input (pin_A1);

 position = (A1 | A2)^ 0x03; //Inputs have pull-ups so invert

 read_position = position;

 if(position == 0){

 position = temp_position;

 }

}

 //**

 void InitPosition() //Read 2 (3) bits to determine position RA1, RA2 (and RA3)

 {

int A1,A2;

 A2 = input (pin_A2)<<1;

 A1 = input (pin_A1);

 position=(A1 | A2)^0x03;

 if(position==0){ //If not at any position

 position=2;

 ReadPosition_fg=1; //Set flag to read

 stop_fg=0;

 }

 }

//***

//Init() - routine

//***

void Init()

{

 setup_wdt (WDT_72MS); //Setup WDT

 setup_ccp1(CCP_PWM); //Set for PWM output

 setup_timer_2(T2_DIV_BY_1,49,1); //Set period to 100kHz resolution 0-200

 port_b_pullups(TRUE);

 setup_adc_ports(AN0); //Select channel

 setup_adc(ADC_CLOCK_DIV_16);

 set_adc_channel(0); //Set to read ADC channel 0

 input(PIN_C3); //Set I2C clock and data lines as inputs

 input(PIN_C4);

 output_bit (PIN_C0 , 0); //Disable motors

 delay_ms(1000); //Delay to let lines settle

 delay_ms(1000);

 InitPosition(); //Get initial position

 enable_interrupts(INT_SSP);

 enable_interrupts(INT_RB);

}

//***

void checkFlags()

{

 if(ReadPosition_fg==1){

 MoveCtrl(); //Move slider

 PositionCtrl(); //Read current position

 if(move_fg==0){

 move_fg=1;

 }

 }

 if(ReadPosition_fg==0){

 move_fg=0;

 }

A motorised fluorescence cube linear positioner.doc 9

}

//***

void main() {

int16 tot_motorCurrent=0,tot_motorCurrent1=0,tot_motorCurrent2=0,tot_motorCurrent3=0,tot_motorCurrent4=0,y,x=0;

 Init(); //Initialize 16F876A Microcontroller

 enable_interrupts(GLOBAL);

 SetPosition = 1

 ReadPosition_fg=1; //Set flags

 FirstRead_fg=1;

 stop_fg=0;

while(1) //Loop Forever

 {

 restart_wdt(); //Restart watchdog timer

 if(ExtSetCtrl_fg==1){

 y=16000; //Delay

 while(y>0){

 y--;

 }

 ExtSetCtrl(); //Get switch setting

 ExtSetCtrl_fg=0; //Reset flag

 }

 checkFlags();

 checkuSwitch(); //Check u-switch state

 if(x==OverCurrentDelay){ //Do OverCurrentDelay cycles then read

 output_bit (PIN_C7 , 1);

 motorCurrent=read_adc(); //Read current on motor

 tot_motorCurrent=motorCurrent;

 tot_motorCurrent4=tot_motorCurrent3;

 tot_motorCurrent3=tot_motorCurrent2; //Shift values

 tot_motorCurrent2=tot_motorCurrent1;

 tot_motorCurrent1=tot_motorCurrent;

 tot_motorCurrent=0; //Zero total

 x=0; //Reset count

 output_bit (PIN_C7 , 0);

 }

 x++;

 if((tot_motorCurrent4+tot_motorCurrent3+tot_motorCurrent2)> intergratedCurrentLimit)

 { //Check if motor current to large

 position = SetPosition; //Make position and setpoint equal

 output_bit (PIN_C0 , 0); //Disable motors if motor current too large

 }

 checkuSwitch(); //Check u-switch state

 readinputs_fg=0; //Clear flag

 }

}

6. Software

Although the unit may be used as a stand-alone device through the 3 position set-point switch on

the control box (and a DC power supply), it is usually controlled through higher level software. We

routinely use a National Instruments LabWindows CVI package, using C-code to write simple test

programs which may also be integrated into larger programs. The test user interface is shown in

Figure 8. The interface between computer and device is by means of USB devices from FTDI Ltd.

Using a combination of FTDI-USB drivers and a separate interface board described elsewhere, I
2
C

communications can be made to the linear positioner.

The test code shown below is used when testing the system through a host controller. It continually

reads the position of the cubes and different cubes may be selected using RS232 commands which

the FTDI-USB drivers convert to USB communications. The GCI_writeI2C_multiPort() and

GCI_readI2C_multiPort() functions format the writing and reading commands so that the USB

interface board can decode to I
2
C commands.

//Program to test 3 cube positioner

#include "cvixml.h" //CVI header files

#include <rs232.h>

#include <cvirte.h>

Figure 8. The user interface panel used for testing the cube

positioner. A cube position is first selected; during the time that

the motor is driving, the ‘cube error’ indicator is on, indicating a

mismatch between required position and actual position. When

the correct position is reached, the error light goes off and the

cube position is indicated.

A motorised fluorescence cube linear positioner.doc 10

#include <userint.h>

#include "DeviceFinder.h"

#include <utility.h>

#include "cube slider_ui.h"

#include "usbconverter_v2.h"

#define CUBEPIC 0x64 //Programmed I2C address of PIC

#define Round RoundRealToNearestInteger //Redefine CVI function

#define bus 2 //Set req’d bus (MPTR system) else set to 2 as default

static int PORT;

static int panelHandle;

static int mode;

static int setPosition=1;

static int timer;

static int initI2Cport(void);

static int sendPosition(int);

static int cubeSlider_initI2Cport(void);

static int cubeSlider_getFTDIport(int *port);

static int getFTDIport(int *PORT);

int main (int argc, char *argv[])

{

 if (InitCVIRTE (0, argv, 0) == 0)

 return -1; /* out of memory */

 if ((panelHandle = LoadPanel (0, "cube slider_ui.uir", PANEL)) < 0)

 return -1;

 DisplayPanel (panelHandle); //Display panel

 if(initI2Cport()==-1)return 0; //Initialise port and set port number

 GCI_EnableLowLevelErrorReporting(1);

 SetCtrlAttribute (panelHandle, PANEL_TIMER, ATTR_ENABLED, 1); //Enable timer

 RunUserInterface ();

 GCI_closeI2C_multiPort(PORT);

 DiscardPanel (panelHandle);

 return 0;

}

static int getFTDIport(int *PORT)

{

char path[MAX_PATHNAME_LEN],ID[20];

int id_panel,pnl,ctrl;

//If we are using an FTDI gizmo Device Finder will give us the port number

 GetProjectDir (path);

 strcat(path,"\\");

 strcat(path, "CubesliderID.txt");

 return selectPortForDevice(path, PORT, "Select Port for cube slider");

}

static int initI2Cport() //Initialise port and set port number

{

int err,ans;

char port_string[10];

if (getFTDIport(&PORT) == 0)

 sprintf(port_string, "COM%d",PORT);

 else { //If device not found or not using FTDI or port error.

 while(getFTDIport(&PORT) != 0){ //Keep testing until exit

 ans=ConfirmPopup ("Comms error", "Try plugging USB cable in or do you want to quit?");

 if(ans==1){ //quit

 return -1;

 }

 }

}

 sprintf(port_string, "COM%d",PORT);

 err = OpenComConfig (PORT, port_string, 9600, 0, 8, 1, 512, 512); //Open port

 SetComTime (PORT, 1.0); //Set port time-out to 1 sec

 FlushInQ (PORT);

 FlushOutQ (PORT);

 return 0;

}

static int sendPosition(int position) //Send required position function

{

char val1[20];

 mode=0; //Set to position mode

 val1[0]=CUBEPIC;

 val1[1]=mode;

 val1[2]=position;

 GCI_writeI2C_multiPort(PORT,6, val1, bus); //Set new position

 return 0;

}

int CVICALLBACK cbsel_cube (int panel, int control, int event, //Callback for position move

void *callbackData, int eventData1, int eventData2)

{

switch (event)

 {

 case EVENT_COMMIT:

 GetCtrlVal(panelHandle, PANEL_SEL_CUBE ,&setPosition); //Get required position

 sendPosition(setPosition); //Send cube position

 break;

 }

 return 0;

}

int CVICALLBACK cbquit (int panel, int control, int event,

 void *callbackData, int eventData1, int eventData2)

{

 switch (event)

 {

 case EVENT_COMMIT:

 QuitUserInterface (0); //Exit program

 break;

 }

 return 0;

A motorised fluorescence cube linear positioner.doc 11

}

int CVICALLBACK cbtimer (int panel, int control, int event, //Timer callback to read back position

 void *callbackData, int eventData1, int eventData2)

{

char val1[20];

int position;

 switch (event)

 {

 case EVENT_TIMER_TICK:

 mode=255; //Set mode for reading

 val1[0]=CUBEPIC;

 val1[1]=mode;

 GCI_writeI2C_multiPort(PORT,6, val1, bus);

 val1[0]=(CUBEPIC | 0x01); //Add 1 to address for I2C read

 GCI_readI2C_multiPort(PORT,1, val1, bus); //Read cube position

 position = val1[0] & 0xff; //Returned position value

 if(setPosition !=position){ //If mismatch between set position and read back

position

 SetCtrlVal(panelHandle, PANEL_LED ,1); //Turn on position error LED

 }

 else{

 SetCtrlVal(panelHandle, PANEL_LED ,0);} //If correct position turn off position error LED

 SetCtrlVal(panelHandle, PANEL_CUBE_SET ,position);//Set cube position

 break;

 }

 return 0;

}

However, this self-contained code is of limited use when the system is integrated within a larger

application, for example when we use the positioner as part of a microscope system. The approach

used, shown in Figure 9, is to first define the optical characteristics of numerous cubes which may

be used and select from the list of available cubes which will be the ones used. A rather simple GUI

is then used during normal operation.

Figure 9. The main panel (top left) contains a fluorophore selector, an error indicator, and a

‘Configure’ button that opens up the device lists; in this instance, these allow the user to configure

which cubes are present. Selecting one cube and clicking Edit allows the parameters stored

(excitation, emission and dichroic reflector wavelengths) for the cube to be viewed and edited.

These wavelength details entered in the user panel shown in Figure 9 are used by the microscope to

false-colour the images and in the metadata of each image. This ‘mid’ level code provides an

application programming interface (API) so that higher level code, such a time lapse sequence with

multiple cubes, can change the cube automatically without user intervention. Please refer to the

Microscopy Software Architecture document for details of how the high level code is arranged in

the microscopes.

This note was prepared by B. Vojnovic, PR Barber, IDC Tullis and RG Newman in July 2007 and

updated in August 2011. Thanks are due to J. Prentice and G. Shortland for machining the various

A motorised fluorescence cube linear positioner.doc 12

components and to RG Newman for construction and testing. Detailed drawings of the various

components are available on request (SolidWorks format), as are printed circuit board layouts

(Number One Systems EasyPC (version 14 or below, http://www.numberone.com/).

We acknowledge the financial support of Cancer Research UK, the MRC and EPSRC.

 © Gray Institute, Department of Oncology, University of Oxford, 2011.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0

Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-

nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,

California, 94041, USA.

